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should be stable if we hope to observe them. In this paper we consider D-term strings in

D = 4 , N = 1 supergravity with a constant Fayet-Iliopoulos term. We show that the

positive deficit angle supersymmetric D-term string is non-perturbatively stable by using

standard Witten-Nester techniques to prove a positive energy theorem. Particular attention

is paid to the negative deficit angle D-term string, which is known to violate the dominant

energy condition. Within the class of string solutions we consider, this violation implies

that the negative deficit angle D-term string must have a naked pathology and therefore

the positive energy theorem we prove does not apply to it. As an interesting aside, we

show that the Witten-Nester charge calculates the total gravitational energy of the D-term

string without the need for a cut-off, which may not have been expected.
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1. Introduction

The resurgence of interest in cosmic strings has been driven by the realisation that these

objects arise naturally in supergravity and string theory [1, 2]. A particular class of local

cosmic strings can be found as solitonic solutions supported by a D-term potential in

four-dimensional N = 1 supergravity with constant Fayet-Iliopoulos terms [1]. In fact,

these D-term string solutions were found previously as the point-like solutions in three-

dimensional supergravity [3 – 5], and in the globally supersymmetric Abelian-Higgs theory

in [6]. A D-term string can also be understood as a D1+q-brane wrapping a calibrated q-

cycle in an internal manifold of a string theory compactification [1]. The relation between

the two pictures can be established by studying the effective worldvolume theory of space-

filling D-D-brane pairs in Calabi-Yau compactifications of Type II supergravity, where it is

possible to reproduce the D-term potential [7]. For example, in flux compactifications, one

can use the appropriate generalised calibrations to explicitly show that the string tension

is set by the Fayet-Iliopoulos term [8, 9].

Much recent attention has focused on cosmological aspects of string theory cosmic

strings, e.g. string networks [2]. However, it is perhaps surprising to note that the stability

of a single, isolated supersymmetric D-term string solution has not been discussed. Bo-

gomol’nyi bounds for general cosmic strings were constructed some time ago by Comtet

and Gibbons [10] and the energy of local string solutions in current discussions, including

the D-term strings, is usually defined using such Bogomol’nyi-type arguments [1, 11, 12].

However, as noted in [11], a Bogomol’nyi bound does not prove the stability of such local
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string solutions, as one is implicitly assuming that the solutions remain axisymmetric. It

is therefore possible that non-axisymmetric perturbations or string worldvolume perturba-

tions could lead to instabilities. Bogomol’nyi bounds are useful for displaying instabilities

within such a restricted symmetry class. For instance, axisymmetric perturbations that

grow without bound were found in [12] for axionic D-term strings by studying the linearised

Bogomol’nyi energy functional in globally supersymmetric theories.

A spinorial version of the Bogomol’nyi bound has been derived previously for the point-

like solutions in three-dimensional supergravity [3 – 5]. However, that is not sufficient to

prove the stability of the D-term string solution in four dimensions. In this article we

shall reconsider the stability of D-term strings using the same spinorial Witten-Nester

method [13, 14]. A key step in finding the original D-term string solutions was noting a

fortuitous cancellation between singular terms in the gravitino Killing spinor equations [1,

3 – 5]. The conical form of the metric ansatz gives rise to singularities in the spin connection.

However, these are cancelled by equivalent contributions from the gauge field. It is this

same cancellation that allows one to derive the Witten-Nester form of the Bogomol’nyi

bound.

We begin in section 2 by reviewing the D-term string solution, with particular attention

being paid to the negative deficit angle (δ < 0) solution. Using a result from [10], we show

that the δ < 0 string is not a regular solution to the field equations; it necessarily violates

the dominant energy condition, whereas the matter Lagrangian does not. We argue that

a δ < 0 D-term string must have a naked pathology, and therefore could not exist as a

counterexample to any positive energy bound. In section 3, we review the Bogomol’nyi

energy functional approach used in [1] to define the energy density of the D-term. We

then discuss the more rigourous, Hamiltonian energy density definition of Hawking and

Horowitz [15], which is naturally associated to the linearised version of the Witten-Nester

energy density. In section 4, we will proceed to define an energy density integral for string

solutions in four-dimensions using a generalised Witten-Nestor tensor. Using standard

positive energy theorem techniques, we prove that the Witten-Nester charge is manifestly

non-negative. We then use a linearised version of the surface integral expression to explicitly

calculate the energy density and Bogomol’nyi bound for the D-term string solution. We

find that the result agrees with the original calculation, and we do not have to enforce an

infrared cut-off to ensure finiteness.

Finally, in section 4, we turn to a discussion of the stability of the positive deficit angle

(δ > 0) D-term string solution. A key assumption of Witten’s proof of the positive energy

theorem is that matter obeys the dominant energy condition, which holds for the super-

gravity in question here. Assuming then that there are no internal boundaries and that

the generalised Witten condition holds, we argue that the non-linear Bogomol’nyi bound

derived from the Witten-Nester expression implies that the δ > 0 string is classically stable

against perturbations that asymptotically vanish at infinity. This can be seen as a non-

linear version of Gregory’s C-energy argument for local cosmic strings [16]. In particular,

we find that the δ > 0 D-term string cannot decay perturbatively to the δ < 0 string i.e.

that the δ < 0 string is not a valid perturbation as it does not vanish asymptotically. We

show that any instanton that could provide a non-perturbative, tunnelling process between
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supersymmetric solutions with δ > 0 and δ < 0 would have to violate the dominant energy

condition, and therefore does not affect the positive energy proof. This proves that the

δ > 0 D-term string of N = 1 supergravity with constant Fayet-Iliopoulos terms is stable.

2. The D-term string in N = 1 supergravity

Let us begin by briefly reviewing the relevant aspects of four-dimensional N = 1 super-

gravity with constant Fayet-Iliopoulos terms [1]. The Lagrangian for the bosonic sector of

this theory is,1

e−1L =
1

2
R − ∂̂µφ ∂̂µφ∗ − 1

4
FµνFµν − V D , (2.1)

where φ is the U(1)-charged Higgs field, the Kähler potential is given by K = φ∗φ and the

superpotential vanishes. The D-term potential is defined by

V D =
1

2
D2 D = gξ − gφ∗ φ , (2.2)

where ξ is a constant that we choose to be positive. Wµ is an abelian gauge field,

Fµν ≡ ∂µWν − ∂νWµ , ∂̂µφ ≡ (∂µ − igWµ)φ . (2.3)

The fermions are Majorana spinors. However, it is often convenient to split them into

complex parts using left and right projectors:

PL =
1

2
(1 + γ5) , PR =

1

2
(1 − γ5) . (2.4)

The supersymmetry transformations for the fermions (the Killing spinor equations) can

then be written as

δψµ = ∇̂µε = ∇µε +
i

2
γ5A

B
µ ε , (2.5)

δχL =
1

2
(6∂ − ig 6W )φεR , (2.6)

δλ =
1

4
γµνFµνε + 1

2
iγ5Dε . (2.7)

The covariant derivative on fermions is defined as ∇µ = ∂µ + 1
4
ωµ

αβ(e)γαβ . The gravitino

U(1) connection AB
µ plays an important role in the gravitino transformations.

AB
µ =

1

2
i [φ∂µφ∗ − φ∗∂µφ] + WµD

=
1

2
i
[

φ∂̂µφ∗ − φ∗∂̂µφ
]

+ gWµξ . (2.8)

The cosmic string solutions to this theory found in [1] solve the Killing spinor equations

(2.5) - (2.7) for some non-vanishing ε. The static ansatz for the metric in cylindrically

symmetric form is

ds2 = −dt2 + dz2 + dr2 + C2(r)dθ2 , (2.9)

1We are using natural units, setting MP = 1.
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where the plane of the string is parametrised by r and θ. We choose vierbein e1 = dr

and e2 = C(r)dθ, which gives ω12
θ = −C ′(r) as the only non-vanishing spin connection

component.

The Higgs field has the following form

φ(r, θ) = f(r) einθ , (2.10)

where θ is an azimuthal angle, and f(r) is a real function that outside the string core

approaches the vacuum value f2 = ξ, for which the D-term vanishes. The gauge potential

is given by

gWµ dxµ = nα(r) dθ → F = 1
2
Fµν dxµ dxν =

nα′(r)

g
dr dθ . (2.11)

One can solve for the profile functions α(r) and C(r) explicitly in limiting cases, and one

sees that the metric describes a spacetime with a conical deficit angle proportional to the

Fayet-Iliopoulos constant ξ. A globally well-behaved spinor parameter is defined by

εL(θ) = e∓
1
2
iθε0L , (2.12)

where ε0L is a constant satisfying the following projection

γ12ε = ∓iγ5ε . (2.13)

By demanding that the following condition holds

1 − C ′(r) = ±AB
θ , (2.14)

one can then find solutions to the gravitino Killing spinor equation:

∇̂µεL = 0. (2.15)

As noted originally for three-dimensional supergravity [3 – 5], the key to solving this Killing

spinor equation in a conical spacetime is the U(1) charge of the gravitino. This allows the

singular spin connection term to be cancelled precisely because both the U(1) charge and

the deficit angle are set by the Fayet-Iliopoulos term ξ.

When the distance r from the string core is large, the solution (2.9) takes the form

of an asymptotically locally flat conical metric with an angular deficit angle due to the

constant FI term ξ:

ds2 = −dt2 + dz2 + dr2 + r2 (1 ∓ nξ)2 dθ2 , (2.16)

with the composite gauge field given by AB
θ = nξ. Note that in the limit r → ∞ the full

supersymmetry is restored as Fµν = 0, D = 0, ∂rφ = ∂̂θφ = 0 and Rµν
ab = 0, which

corresponds to the enhancement of supersymmetry away from the core of the string. It is

interesting to note that supersymmetry only fixes the metric function C(r) up to a sign [1],

which will have some consequence for the definition of the string energy.
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2.1 The negative deficit angle (δ < 0) string

A basic assumption in the proof of the positive energy theorem, which we shall apply too in

our proof of stability, is that matter satisfies the dominant energy condition, which states

that for any future-directed timelike vector uµ, −T ν
µuµ is non-spacelike. The dominant

energy condition implies the weak, or null, energy condition,

Tµνuµuν ≥ 0 , (2.17)

where uµ is now any timelike, or null, vector. For a static spacetime, such as that of the

D-term string, an equivalent statement is that T00 dominates over any other stress-energy

tensor component in any orthonormal frame [17]:

T00 ≥ |Tij| for any i, j , (2.18)

where i, j are purely spatial indices. Physically this corresponds to the principle of causal-

ity; that matter energy flows at subluminal speeds. In particular, we see that the dominant

energy condition implies that matter energy density is strictly non-negative in any orthonor-

mal frame. It is well known that regular matter, such as massless scalar and vector fields,

satisfies the dominant energy condition, however, a violation of this condition could occur

if a massive scalar field had a sufficiently negative potential. It is straightforward to check

that the supersymmetric Lagrangian (2.1), with its manifestly positive potential, satisfies

this condition.

We shall now argue that the static string asymptotic solution with negative deficit

angle (i.e. with C(r) = r(1 + |n|ξ)) should violate the assumption of the dominant energy

condition when analytically continued over the whole space. As the matter Lagrangian

does not, it cannot be a full solution unless we add other matter. Therefore, it does not

affect our arguments relating to the positive energy theorem. In contrast, the δ > 0 D-term

string does not require the dominant energy condition to be violated and the solution is

regular throughout [1].

One of the requirements for the Witten-Nester positive energy is that the Einstein

equations be solved throughout the spacelike surface on which one wishes to compute the

energy of the solution. As was shown in [10], a general string solution can only have a

δ < 0 if its matter sector has T00 < 0, i.e. it violates the dominant energy condition.

We shall now summarise the basic ingredients of this argument: First, choose a general

three-dimensional, cylindrically symmetric, spacelike Cauchy surface Σ3. Then write the

Einstein equations in terms of the Ricci scalar 3R of Σ3 (i.e. the ‘initial value constraint’)

using the Gauss-Codazzi relations. It is possible to rewrite 3R in terms of the trace of the

extrinsic curvature 2K of a two-dimensional submanifold Σ2 transverse to the string, plus

terms that are manifestly positive. Integrating the initial value constraint over this two-

dimensional submanifold and applying the Gauss-Bonnet theorem, one obtains a relation

of the form:

δ ∼ +

∫

Σ2

T00 + (. . .)2 , (2.19)

where δ is the deficit angle. Hence, we see that it is only possible to have a solution with

δ < 0 if the Lagrangian violates the dominant energy condition. However, one can easily
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check that the Lagrangian of our model (2.1) can only have T00 ≥ 0. Assuming a static

ansatz, with a vanishing timelike component for the composite gauge field, AB
0 = 0, our

system (2.1) has the following T00:

T00 = (−g00)
(

∂̂iφ ∂̂iφ∗ + 1
4
FijF

ij + 1
2

D2
)

. (2.20)

This means that the δ < 0 D-term string fails to solve the Einstein equations in some

region of the putative Cauchy surface,2 and therefore needs a source with negative T00.

Although the δ < 0 solution is not known in closed form for small radius, the string ansatz

we are using (2.9) does not have a gtt component, and hence does not allow it to have

horizons in the interior of the solution. This means that this defect, which requires the

presence of a source, sweeps out a worldvolume over infinite time. To see this, one can

roughly think of the defect as a region defined by r < rd for some rd. Then, the absence

of horizons in the metric implies that the ‘r’ coordinate is everywhere spacelike, so the

defect is present at all times. In other words, the region of the solution that violates

Einstein’s equations is naked, which means that no spacelike surface will be able to avoid

it. Therefore, the positive energy theorem does not apply to the δ < 0 solution.

This is reminiscent of the Schwarzschild solution with negative mass. Although the

positive mass Schwarzschild solution fails to solve the Einstein equations at the curvature

singularity, the Kruskal extension shows that the latter is actually a spacelike region. This

means that it is possible to choose a spacelike Cauchy surface that avoids the singularity,

thereby guaranteeing that the equations of motion are solved throughout it. The negative

mass solution, however, has a naked singularity that cannot be avoided by any spacelike

surface. This excludes it from the Witten-Nester positive energy theorem [18].

Throughout the rest of this paper, we will focus on the δ > 0 solution and will return

to the δ < 0 case only in the discussion of the stability of the positive case.

Before proceeding, we shall comment briefly on the possibility of a rotating solution,

i.e., a D-term string with angular momentum. In [19], a spatially localised spinning solution

of three-dimensional gravity was found. This stationary solution is the three-dimensional

analogue of the Kerr solution, with the angular momentum being determined by the mo-

mentum densities T0i. However, the three-dimensional spinning solution can have vanishing

energy density (T00 = 0) and non-zero angular momentum, and therefore obviously violates

the dominant energy condition. Indeed it was already noted in [19] that such spacetimes

are not causal. To our knowledge, an analogous spinning string solution of this form has

not been found in four-dimensional N = 1 supergravity with a constant Fayet-Iliopoulos

term, and it would be interesting to understand whether it exists. While it is difficult to

discuss the properties of such a hypothetical solution, it would seem reasonable to assume

that it would suffer from the same causality problem as its three-dimensional counterpart,

and thus it would also be excluded from the Witten-Nester positive energy theorem.

3. Defining the energy of the D-term string

In order to address the stability of the D-term string solution, it shall be useful to first

2We thank G. Gibbons and S. Ross for useful discussions on this point.
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reconsider its energy definition. Various methods exist for defining energy in spacetimes

with non-trivial asymptotic structure. In [1], the string energy density was defined using

a Bogomol’nyi style argument. As the solution is time-independent, the ansatz could be

directly inserted into the action with Gibbons-Hawking boundary terms included to give an

energy functional. The integral was then restricted to only run over directions transverse

to the string to ensure it produced a finite result. Using the Bogomol’nyi method, this

integral was then written in the following way

µstring =

∫

drdθ C(r)

{

|(∂̂rφ ± iC−1 ∂̂θ)φ|2 +
1

2
[F12 ∓ D]2

}

+ (3.1)

+

∫

drdθ
[

∂r

(

C ′ ± Aθ

)B ∓ ∂θA
B
r

]

−
∫

dθ C ′

∣

∣

∣

∣

r=∞

+

∫

dθ C ′

∣

∣

∣

∣

r=0

.

The condition arising from the gravitino Killing spinor equation (2.14) implies that the

first term in the second line in (3.1) vanishes. The first line vanishes by the remaining

Killing spinor equations δλ = 0 = δχL. The energy density is thus given by the difference

between the boundary terms at r = 0 and at r = ∞ [1]:

µstring = 2π
(

C ′
∣

∣

r=0
− C ′

∣

∣

r=∞

)

= ±2πnξ , (3.2)

which agrees with the expected answer for a cosmic string solution [20, 21].

3.1 A Hamiltonian energy definition

Let us now reformulate the energy definition for the D-term string using a more rigourous

approach. We shall follow the approach of Hawking and Horowitz [15], who have proposed

a counterterm subtraction method to define the energy of a non-compact spacetime from

its Hamiltonian. The counterterm here is nothing more than the Hamiltonian of an ap-

propriately identified reference, or background, spacetime denoted H0. One performs a

canonical ADM decomposition3 of the non-compact spacetime into R × Σt and defines its

total energy as the value of the physical Hamiltonian, which itself is defined by:

Hphys ≡ H−H0 =

∫

Σt

[NH + NiH
i] −

∫

S∞

t

(

N(2K − 2K0) − N ipijr
j
)

, (3.3)

where the background contributes just a boundary term,

H0 = −
∫

S∞

t

√

h0N
2K0 . (3.4)

Here N is the lapse function, N i is the shift function, and H and H i are the constraints.

Indices are raised and lowered by gij , the intrinsic metric on the spatial hypersurfaces Σt.

The conjugate momenta pij and shift function N i vanish for the D-term string solution,

as does the Gauss constraint, which we have not written explicitly. The boundary terms

are written in terms of the extrinsic curvature 2K of a 2-surface S∞
t in Σt , where S∞

t is

3A specific analysis of the ADM decomposition in cylindrically symmetric spacetimes has been given by

Frolov et al [25].
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formally a family of 2-surfaces with metric hij , defined by the intersection of Σt with the

asymptotic boundary Σ∞.

The background Hamiltonian is defined solely by 2K0, the embedding of the 2-surface

into the spatial 3-slice of the appropriately identified background spacetime. In order to

evaluate the energy of a particular cosmic string solution, it was then argued in [15] that

the appropriate background spacetime should be the string metric with vanishing deficit

angle, i.e. Minkowski space. It is straightforward to calculate the extrinsic curvature traces,

√
h 2K = −(1 ∓ nξ) ,

√

h0
2K0 = −1 . (3.5)

For the case of the D-term string N = 1, and the generic surface S∞
t is the cylinder

Rz ×S1
θ . Any integration over the string worldvolume direction Rz will produce an infinite

contribution, thus we should regulate the integral (3.3) to have a finite result. This can

be formally achieved by wrapping the string on a circle S1
z of fixed radius R [22 – 24]. The

string energy per unit length is then defined by

E =
1

2πR

∫

S1
z×S1

θ

N(
√

h 2K −
√

h0
2K0) = −

∫

dθ(∓nξ) = ±2πnξ , (3.6)

which agrees with the known result for cylindrically symmetric spacetimes [20, 21], and

thus also the Bogomol’nyi approach. The advantage of this definition is that one does

not have to use exceptional symmetries of the spacetime in question in order to define

the energy in general. Also, while it was necessary to wrap the spatial component of the

string worldvolume in order to have a finite result, we do not have to regulate the integral

otherwise. One may have anticipated the need for an infrared cut-off in such a conical

spacetime. However, the boundary term
√

h 2K is itself already finite at large r. Finally,

we will see that this form of the energy definition appears naturally in the linearised version

of the spinorial analysis, to which we now turn.

4. Positive energy and stability

The energy definitions given in the previous section have concrete physical interpretations.

However, both are problematic if one wants to consider the perturbative stability of the D-

term string background. The Bogomol’nyi bound argument applied to the D-term string is

certainly indicative of its stability. Unfortunately, by directly substituting the metric ansatz

into the action one is limiting any perturbations to lie within the same symmetry class as the

background, hence no satisfactory stability argument can be given by linearising the BPS

equations. One can consider a general linearised perturbation analysis of the Hamiltonian

energy, but this generically leads to terms of indefinite sign, even around flat spacetime [26].

The most rigourous way to prove the stability of a solution in a generally covariant theory is

to use the spinorial Witten-Nester technique [13, 14]. One defines the Witten-Nester four-

momentum as a surface integral, one component of which is the total gravitational energy

i.e. the ADM-like mass plus a charge contribution. Using Gauss’ law to rewrite this as a

volume integral, it is then straightforward to show that the total energy is non-negative,

and only vanishes for supersymmetric solutions. This implies that any perturbation around

– 8 –
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a supersymmetric background solution must contribute positively to the total energy, and

therefore cannot cause an instability. We will now apply this method to the static D-term

string, where it works in much the same way as for supersymmetric solutions to three-

dimensional supergravity [3 – 5]. Once again, we will only consider D-term strings with

positive deficit angle δ > 0. We shall argue that they are non-perturbatively stable when

considered as solutions of the supergravity theory and in particular, that they cannot decay

to the string with negative deficit angle δ < 0.

4.1 Witten-Nester energy and the Bogomol’nyi bound

We begin by defining the generalised Witten-Nester 2-form E = 1
2
Eµνdxµ∧dxν [18, 28 – 32]:

Eµν = η̄ γµνρ∇̂ρη , (4.1)

where we are using the supercovariant derivative defined by the gravitino supersymmetry

transformation (2.5), and η denotes a commuting spinor function that asymptotically tends

to a background Killing spinor ∇̂ρη = 0.

We now define the Witten-Nester four-momentum as the integral of the dual of E

Pµvµ=

∫

∂M

∗E (4.2)

=
1

2

∫

∂M

dSµνEµν =

∫

M

dΣν∇µEµν , (4.3)

where vµ = η̄γµη. In the second line we have assumed that there are no internal boundaries

since the δ > 0 D-term is regular [1], and used Gauss’ law to write a volume integral. At

this point, one should understand that ∂M is the two-dimensional boundary of an arbitrary

three-dimensional subsurface M . Before proving that the energy P0, defined by the Witten-

Nester integral is positive, let us first express it in more familiar terms. In order to identify

the quantities appearing in this boundary expression, we need only consider linearised

perturbations in the integrand. We can then manipulate the surface integral expression in

the standard way to find

Pµvµ =
1

2

∫

∂M

dSµν η̄ γµνρ∇̂ρη

=
1

8

∫

∂M

dSµνεµνρσεδαβσ∆ω
αβ
ρ eα

αe
β
β η̄γδη − 1

4

∫

∂M

dSµνεµνρσAB
ρ η̄γση . (4.4)

The first term in (4.4), which we shall denote Pµvµ, is Nester’s expression for the grav-

itational four-momentum [14], where ∆ω
αβ
ρ is the difference of the spin connection with

respect to the reference spacetime with AB
ρ = 0, i.e. Minkowski spacetime. The second

term in (4.4), which we shall denote JR
µ vµ, defines the R-charge of the string, i.e. the

holonomy of composite gauge potential. We have assumed here that perturbations fall-off

sufficiently quickly such that the integral is well-defined. Once again, this surface charge

integral must be regulated i.e. we have to wrap the spatial worldvolume of the string such

that ∂M = Rz × S1
θ → S1

z × S1
θ , and then integrate out the z-contribution. The charge

– 9 –
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integral is then defined only over spatial directions transverse to the string, and it is for-

mally the same as the equivalent three-dimensional expression [3 – 5, 35, 22]. Thus, the

fall-off conditions required for three-dimensional metric perturbations to produce finite

contributions to boundary integrals, which have been described in [34], also apply here.

In order to calculate this linearised charge integral for an arbitrary string configuration,

one should also ensure that no Kaluza-Klein type charges appear in the boundary energy

density integral in three dimensions [35, 22].

Let us now use (4.4) to evaluate the total gravitational energy of the D-term string

solution itself. As discussed above, for the string solution we must regulate the worldvolume

integral in the charge definition to ensure it produces a finite result. Thus we choose to wrap

the spatial worldvolume direction of the string on an S1 of fixed radius R and calculate the

corresponding energy density. If we now fix coordinates such that Σ has a simple timelike

normal and choose vµ to be the asymptotic timelike Killing vector of the spacetime, we

can insert the vierbein and spin connection of the D-term string metric (2.16) into (4.4)

to find

Pµvµ =
1

2πR

∫

dzdθ
([

1 − C ′(r)
]

∓ AB
θ

)

v0 . (4.5)

where the ∓ comes from using the projection condition (2.13). We can now explicitly

identify the R-charge QR of the D-term string,

QR = JR
0 = ± 1

2πR

∫

dzdθAB
θ v0 . (4.6)

We see that the first term in (4.5), which is equivalent of the ADM mass, produces the

correct result for the string, in agreement with both the Hamiltonian and Bogomol’nyi style

arguments. In fact, it is known that the Nester definition of energy that appears here is one

of an equivalent set of boundary term energy definitions [27]. These equivalent definitions

all arise as rewritings of the Gibbons-Hawking term, and therefore are formally the same

as the Hawking-Horowitz expression. It is in this sense that the Hawking-Horowitz energy

is naturally related to the spinorial definition. Moreover, both the Witten-Nester and

Hawking-Horowitz energies are computed without having to insert a cut-off at large r i.e.

once the spatial worldvolume contribution is accounted for, both charges are well-defined

and produce a finite result.

In order to prove the positivity of the Witten-Nester four-momentum we now turn to

the volume integral expression

Pµvµ =

∫

M

dΣν∇µEµν . (4.7)

We would like to show that the right-hand side of this expression is positive by rewriting

it as a sum of squares. We are no longer interested in calculating the energy of a par-

ticular string solution. Rather, we want to show that an arbitrary on-shell perturbation

of a supersymmetric solution that vanishes asymptotically, but is otherwise unbounded,

contributes a positive amount to the total energy. As such, we shall not wrap the spatial

direction of the string worldvolume, such that M is a two-dimensional region, but consider
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the full three-dimensional volume integral with M = Rr × Rz × S1
θ , allowing for the most

general perturbations. A lengthy calculation using the standard manipulations [28 – 32]

then leads to the following expression

Pµvµ =

∫

M

dΣν

(

∇̂µηγµνρ∇̂ρη + δλγνδλ + 2δχLγνδχL + 2δχRγνδχR

)

, (4.8)

where δλ and δχL,R are the supersymmetry transformations (2.5)-(2.7), defined now with

a commuting spinor parameter η. Choosing Σ to be an initial hypersurface with simple

timelike norm, we find that the Witten-Nester charge becomes

Pµvµ =

∫

M

dΣ0

(

−∇̂iη
†γiγj∇̂jη + ηij∇̂iη

†∇̂jη + δλ†δλ + 2δχ†
LδχL + 2δχ†

RδχR

)

. (4.9)

We now choose spinors that obey the generalised Witten condition,

γj∇̂jη = 0 , (4.10)

which implies that the integral is manifestly positive:

Pµvµ =

∫

M

dΣ0

(

ηij∇̂iη
†∇̂jη + δλ†δλ + 2δχ†

LδχL + 2δχ†
RδχR

)

. (4.11)

In order that this implies a positive energy, we must show the Killing vector vµ is non-

spacelike and future directed. In fact, as we are using commuting Majorana spinors it is

straightforward to apply the Fierz identity to η̄γµηη̄γµη to check that vµ is null. As our

choice of initial hypersurface Σ was arbitrary, we can allow for arbitrary variations of it.

This means that our expressions get promoted to fully covariant versions, and the Witten

condition becomes γµ∇̂µη = 0. If we now use the covariant form of our result (4.11) in

conjunction with the expression for the Witten-Nester four-momentum (4.4), we reproduce

the Bogomol’nyi bound for the D-term string:

η0

(

Pν − JR
ν

)

γνη0 ≥ 0 . (4.12)

Looking again at (4.11), we see that this inequality is saturated when the solution is

supersymmetric, i.e. when δλ = δχ = δψµ = 0. Here δψi has been promoted to δψµ

by allowing for arbitrary variations of the hypersurface Σ. It is possible to bring the

Bogomol’nyi bound (4.12) into the more familiar form P0 − QR ≥ 0 by taking the trace

over the basis of spinors.

4.2 Stability of the δ > 0 D-term string

We shall now discuss to what extent the bound (4.12) implies stability for the positive

deficit angle solutions. Let us begin by discussing how this result differs from the three-

dimensional bound derived in [3 – 5]. We know that in order to have a finite result for the

energy of a p-brane in D dimensions, one must wrap its spatial worldvolume on a p-torus,

and consider the corresponding energy density [22 – 24]. As discussed above, one must

also ensure that all perturbations fall-off sufficiently quickly such that no Kaluza-Klein
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type charges appear in the boundary energy density integral in (D−p) dimensions. For

the D-term string this amounted to wrapping the z-direction on an S1 of fixed radius and

calculating the corresponding energy density in three dimensions. If no Kaluza-Klein type

charges appear, then the energy density calculation for a particular solution will be nothing

more than the corresponding three-dimensional version [3 – 5]. In this sense the D-term

string is seen as a solution of a consistent reduction to the massless sector of the resulting

three-dimensional supergravity theory. However, if one wishes to consider the stability of

this class of string solutions, it is the volume integral in four dimensions that must be

studied. The perturbations that would source Kaluza-Klein charges in three dimensions

may be asymptotically small, and thus not contribute to the boundary expression, but they

are unbounded in the bulk of the spacetime. Experience with string-like solutions in higher

dimensions tells us that possible instabilities would arise in the massive Kaluza-Klein tensor

perturbations in the dimensionally reduced theory [36]. Thus it is not sufficient to prove

stability by studying just the massless sector in three dimensions; rather one must consider

the full Kaluza-Klein tower, or equivalently the original four-dimensional theory.

Having understood that it is necessary to reconsider the stability question from the

four-dimensional perspective, one can easily see that the above proof of the Bogomol’nyi

bound proves the perturbative stability of the D-term string with metric (2.16) to all order

in perturbations. While we have not stated the explicit fall-off conditions for such pertur-

bations (see [34] for details), the primary constraint is that they vanish asymptotically. It

is not difficult to check that a negative deficit angle string viewed as a metric perturbation

of the positive deficit angle string does not vanish asymptotically, therefore is not a per-

turbative decay channel. Nevertheless one should also question whether non-perturbative

decay channels exist.

When studying non-perturbative quantum tunnelling effects, one must relax the preser-

vation of boundary conditions by the decay process in question and allow for processes that

can alter them dynamically. The archetypical example of this is the Coleman-de Luccia

bounce solution in [37]. In that paper a mechanism is described by which Minkowski space-

time, viewed as the false vacuum of a certain theory, can decay into AdS, viewed as the

true vacuum, by forming a bubble of true vacuum at the origin of spacetime that grows

at the speed of light, quickly engulfing the universe. If we do not want to exclude such an

interesting non-perturbative effect in our case we must be willing to relinquish the fixed

asymptotic deficit angle and allow for a decay channel that can change it. However, Taylor

has argued in [40] that decay modes via bubble nucleation are inconsistent with ten and

eleven dimensional supergravity theories.4 The arguments, which we will now sketch, carry

over to other supergravity theories.

The decay of a false vacuum into a true vacuum in the semi-classical theory is described

in two steps. First, one finds a ‘bounce’ solution to the Euclidean equations of motion that

asymptotes to the false vacuum, but is allowed (expected) to be different from it in the inte-

rior. This describes the nucleation of a ‘bubble of true vacuum’ inside a universe in the false

4Note that it is possible to find instantons describing the decay of non-supersymmetric strings via black

hole pair production [38, 39].
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vacuum through barrier penetration. On this solution, one must find a zero-momentum hy-

persurface (i.e. surface of zero extrinsic curvature w.r.t. Euclidean time) from which one can

obtain a Lorentzian solution via Wick rotation.5 This describes the evolution of the bubble

in time. Such a zero-momentum hypersurface can be seen as a time-independent spacelike

hypersurface in the Lorentzian theory. If this solution is required to asymptote to the orig-

inal false vacuum solution, then it must also admit an asymptotically Killing spinor that

is well-defined on the whole hypersurface. However, the positive energy theorem implies

that the energy of this solution can only be higher than that of the false vacuum, making

it energetically unfavourable for the nucleation to take place. If the energy is equal to that

of the false vacuum then the spinor must be globally Killing, which means the solution is

no different from the false vacuum solution. In other words, no bubble is being nucleated.

This argument substantiates our claim that the positive energy proof is non-

perturbative for the δ > 0 D-term string. Realistically, however, the supergravity model we

study should be viewed as being embedded in a larger model, in which one cannot exclude

other non-perturbative decay channels such as monopole creation.

5. Discussions

We have reconsidered the energy and stability of the D-term string solution of N = 1

supergravity with constant Fayet-Iliopoulos terms. Our method was to use the Witten-

Nester approach to prove that the positive deficit angle (δ > 0) supersymmetric D-term

string was stable. Using the gravitino supersymmetry transformation as a guide, we defined

the generalised Witten-Nester 2-form and the associated surface and volume form of the

charge integrals. We were then able to rewrite the volume integral as a sum of squares plus

one term of indefinite sign using standard manipulations. The important feature of the D-

term string solution is the precise cancellation between the singular components of the spin

connection and the holonomy of the composite gauge field AB
µ , which allowed the Killing

spinor equations to be solved in the asymptotically conical background [1, 3 – 5]. This same

cancellation implies we can enforce a generalised Witten condition on the commuting spinor

parameters, γi∇̂iη = 0. This allows us to consistently remove the indefinite term in the

charge integral, thus proving that the Witten-Nester expression for the total gravitational

energy is bounded from below.

By considering the surface integral energy expression, we were able to reproduce the

known results for the D-term string energy density, R-charge and the Bogomol’nyi bound

without the need for an infrared cut-off. We also argued that the spinorial expression for

the string energy density, written in the canonical Nester form, is formally equivalent to

the Hawking-Horowitz version of the Hamiltonian energy definition, which we presented as

an alternative to the Bogomol’nyi style approach advocated in [1].

The key step in proving the stability of the δ > 0 D-term string is to show that the

δ < 0 string does not stand as counterexample to the positive energy theorem for this class

of supersymmetric solutions. We have seen that the δ < 0 D-term string is not a proper

5Unless g0i metric components vanish, the Lorentzian metric will not be real [40]. Thus any ‘rotating’

Euclidean solutions are ruled out as possible instantonic decay channels.
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solution, as it violates the dominant energy condition whereas the matter Lagrangian does

not. This implies that the δ < 0 string has a naked pathology (i.e. a region, not masked by

a horizon, in which the solution does not solve the field equations), and therefore it is not a

counterexample to the positive energy theorem. We also show that the δ < 0 string is not a

viable perturbative or non-perturbative decay channel for the δ > 0 string. Together with

the Bogomol’nyi bound derived using the Witten-Nester techniques, this implies that the

δ > 0 D-term string of N = 1 supergravity with constant Fayet-Iliopoulos term is stable.

At the level of perturbative stability this can be seen as an extension of Gregory’s analysis

of the linearised stability of local cosmic strings [16]. The main advantage of the spinorial

stability proof we present here is that one is forced to clarify the role that the δ < 0 string,

a point that is often overlooked.

The obvious limitation of our analysis is that it does not cover possible instabilities

that arise when the N = 1 supergravity with Fayet-Iliopoulos terms is embedded into some

grand unified model. In that case it is well known that other decay channels arise, such as

local strings decaying to monopoles along their worldvolume via the Schwinger process [2].

It would be interesting to extend our arguments to cases with more complicated matter

sectors, which may provide an insight into the breakdown of the positive energy theorem in

those cases. Also, it is clearly important to have a better understanding of the behaviour of

a local cosmic string with a negative deficit angle δ < 0, and in particular to assess whether

a more general metric ansatz would allow a δ < 0 string to have a horizon. While this is

unlikely, it is a crucial aspect of these string models and should certainly be considered

more thoroughly.

5.1 Conventions

Our conventions shall follow [41]. We use a ‘mostly plus’ metric. Greek indices are four-

dimensional, and where necessary Latin indices will denote purely spatial directions. Flat

indices will always be underlined.

Our gamma matrices satisfy {γµ, γν} = 2gµν . A barred spinor is Majorana conjugate,

and we define the Majorana condition by λ̄ = λT C = λT γ0γ2 = −iλ†γ0 for an anti-

commuting spinor, and η̄ = η†γ0 for a commuting spinor. γ0 is anti-Hermitian, while

γ5 = iγ0γ1γ2γ3 and γi (i = 1, 2, 3) are Hermitian. For chiral spinors, e.g. λ̄ ≡ PLλ, this

implies λ̄L = −i(λR)†γ0. Some useful gamma matrix identities are

γ5γµ
1

=
i

3!
εµ

1
...µ

4

γµ
2
µ

3
µ

4 , iεµ
1
...µ

4γµ
4

= γµ
1
µ

2
µ

3γ5 . (5.1)

In our conventions, the commutator of two covariant derivatives on a spinor acts as follows:

[∇µ,∇ν ] η = 1
4
Rµν

αβ γαβ η . (5.2)

It is useful to note the following when proving the Bogomol’nyi bound from the Witten-

Nester charge:

∇µEµν = η̄γµνρ∇̂µ∇̂ρη + ∇̂µηγµνρ∇̂ρη , (5.3)

η̄γµνρ∇̂µ∇̂ρη =
1

2
η̄Gν

µγµη − i

4
η̄γµνρFµργ5η − 1

2
η̄γµνρ∂̂µφ∂̂ρφ

∗γ5η , (5.4)

where Gµν is the Einstein tensor.
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We would like to thank Ana Achúcarro, José Edelstein, Dan Freedman, Gary Gibbons,

Ulf Gran, Luca Martucci and Joris Van den Bergh for useful discussions. PS would like to

thank the members of the C.P.T. Durham, where this work has been presented previously,

and especially Simon Ross for comments and suggestions. This work is supported in part

by the Federal Office for Scientific, Technical and Cultural Affairs through the “Interuniver-

sity Attraction Poles Programme — Belgian Science Policy” P5/27 and by the European

Community’s Human Potential Programme under contract MRTN-CT-2004-005104 “Con-

stituents, fundamental forces and symmetries of the universe”.

References

[1] G. Dvali, R. Kallosh and A. Van Proeyen, D-term strings, JHEP 01 (2004) 035

[hep-th/0312005].

[2] E.J. Copeland, R.C. Myers and J. Polchinski, Cosmic F- and D-strings, JHEP 06 (2004) 013

[hep-th/0312067].

[3] K. Becker, M. Becker and A. Strominger, Three-dimensional supergravity and the

cosmological constant, Phys. Rev. D 51 (1995) 6603 [hep-th/9502107].
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